Model accuracy is at 76%, which is a practical ratio without over fitting the model.
The Project Team compared 250 rows of Actual and Predicted DEFAULT results from the test data
Credit_Data_Original.csv.
First, the model.predict_classes() function was used on the test data.
- encoded_predictions = default_model.predict_classes(X_test_scaled[:])
- prediction_labels = label_encoder.inverse_transform(encoded_predictions)
Then, Actual Outcomes and Variable Outcomes were printed for comparison.
- print(f"DEFAULT OUTCOME KEY: (DEFAULT YES: 1 , DEFAULt NO: 0 )")
- print(f"------------------------------------------------------")
- print(f"Predicted Outcome: {prediction_labels}")
- print(f"Actual Outcome: {list(y_test[:])}")